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The problem of existence of periodic solutions of equations of motion of a 
solid body with a fixed point similar to the Lagrange gyroscope is considered. 

The body center of mass is displaced by a small quantity relative to the axis 
of symmetry, and that quantity is taken as the small parameter. Cases of 
existence of periodic solutions that correspond to uniform rotation about the 

axis of symmetry in the Lagrange solution, which can be represented by ser- 
ies in integral or fractional powers of the small parameter, are considered 

separately. 

1. Jn conventional notation the Euler - Poisson equations of motion of a solid 
body about a fixed point in the Lagrange problem ( A = B and C are the prin- 

cipal moments of inertia ; z. = y. = 0 and z. are coordinates of the center of 

mass; p, q, and r are the angular velocity components; yl, y2, and Ys are dir - 
ectional cosines of the vertical in the coordinate system attached to the body ; M is 
the mass of body, and t is time 1 have the particular solution 

p = 0, q = 0, r = r”, y1 = 0, ys = 0, ys = 1 (1.1) 

Let us consider the problem of existence of periodic solutions that in the case close 
to the Lagrange solution correspond to solution (1.1) 

A = B, 2% = ff&, yo = 0 (1.2) 

where El, is a small dimensionless parameter. We introduce the dimensionless quantities 

p = fin-'p' , q = fin-lq’ , r = n-V 

Y1= VcuYll, Ya = vuya), ys = ys’, i!=nf(n= JfE) 
Taking into consideration conditions (I.. 2 1 and omitting for simplicity of notation 

the primea, we reduce the Bnler - Poisson equations, with the fixed z -axis directed 
vertically upwards, to the form 

dp dq dr 
- = Wr + y2, dt = - apr + ys - yl, dt = - @-~ys dt 

4’1 +a dys 
~=ry2--9Yst ~=Pys-'y" r-- - Ph-nws) 

(1.3) 

a = (A -C)IA, b= CIA 

The first three integrals are of the form 
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w? +wea + 2pyro + b$ + (1.4 1 
2y80 

pPYl+ pfl2 + bq8 = ppO?r’lO + ~f?O~80 + brOy80 

p?i + pyza + YSa = 1 

Solution of the first and last of Eqs. (1.4) for r and Y8 yields 

Ys = 1 - lLfit F= rb - Pf2 

where 
fi = ‘1% Fi i- %I p Fa+... 1 (1.5) 

12 = -&4F2--2d+P -&[& (Fsr - Fso)~ - (Ff - ho’)] + . .. 

F* = r? + Yz”, 84 = Pa + a2 + 3, - (Yl” + Y22) 

Initial values of F1 and F2 are denoted by PI, and Fe0 , respectively, and 
the dots indicate terms of higher order of smallness with respect to I(. 

Eliminating in Eq. (1.3 1 Ya and r, we obtain the following 8 system of four 
equations : 

$$A urOq +Y2- W!f2* $$= 1 -~OP-yyJ+ p(UPfa-ffa) (1.6) 

d-f1 
dt =roYa -Q - hf~- qfl), += -r0yl +p+ p(yJ2-pf2) 

By the substitution of variables 

P = p +W, + Cl, q = P +w* 
(1.7) 

Yl = (f+ w I‘, + BP + 4, y2 = (1 + PA) r2 = pQ 

we reduce system (1.6 ) to the form 

dPldt = h&l + pGl, @jdt = -kP + I.4 (1.8) 
dJJ1 df-= hJ2 + pGs, $ = - WI+ ~GP 

h 1,s = '/a[(2 -b)ro & vbaroa - 41, p ='/a (bra +i/bsrog-4 

h=- 
l-0 

&& cl=- 
1 

aroB + 1 ’ ca = aroa + 1 

G1 = - (1 + B4 acrfi - fa (afi - rzfd, Gz = - (1 + W x 

(fi - vfzl + h (Pfi - Ylfi) 

GB = $qfz + qfl - ~929 6 = B (fi - wfz) - pfx + rJ2 

The generating system (with p = 0 1 for Eqs. (1.8 ) has pure imaginary roots 

when bar,2 - 4 > 0 , a2 assumed throughout the following analysis. 

2, Let hl I & = nl / e be a rational number ; this can be achieved by, for 

example, a suitable selection of fg. The general solution for this generating system 

is then periodic of period To = 2nn, / X1 = 2nnz / ?~a. Let us formulate the pro- 

blem of determining the T (p,)-periodic solutions of system (1.8) with fairly small 

p which for p = 0 would reduce to a solution of period To of the generating system. 
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We substitute variable z for t , setting t = (1 + pt) T, where a isa func- 
tion of the smal1 parameter /A which is to be determined. The problem now reduces to 

the determination of periodic solutions of period TO of the new system of equations [l 1 

@/d-r = &Q + PHI, dQ/dt = -4,P + pH, (2.1) 

a,& = Wz+ ILHs, a,/&. = --hJl+ pHI 

HI = (1 + pa) G, + a&Q, Hz = (1 + pa) G2 - a&P 

HS = (1 + pa) G + aM’2, H4 = (1 + pa) G, - ahzrl 

We seek a solution of system (2.1) of the form 

P (7) = MrCoshrz+ IM~sin?k,T+ 2, (2.2) 
Q (z) = - M,sin%,T + M,cosA1~ + 2, 

rl (g = hf3 cos A,T + z 3, r,(g = - M3sinA2T+ 2, 

(Xi = 5 CI”‘(z)/P, i = 1, 2, 3, 4) 
?I=1 

P(O)= Ml= M,“+ ml, Q(O)= M2= AI,“+ m2 

r,(O)= MS = M; + m,, r,(O)= 0 

The periodic solutions of system (1.8 > which correspond to the 7’s -periodic so - 

lutions of system (2.1) are of period T = (1 + pa) T 0' We represent function a 
as a=a,+m,. In accordance with Poincare’s method we vary the initial con- 

ditions which in this case coincide with the arbitrary constants of solution of the genera- 

ting system. We also vary a so as to have solution (2.2 > of periodic form, and seek 

ml9 m2, m3, and m4 in the form of functions of the small parameter p which 

vanish for p = 0. 

3. The coefficients Ci@) (r) are determined by equations 

dcp (T, acp (z) 

dz 
= h,cc) (z) + Hi”)(r), 

ds 
= - h,CI”’ (z) + Hp(z) (3* l) 

dCr) (T) 

dt 
= h,@’ (r) + H!” WY 

dCr) (T) 
dz 

= -h&'(z)+ Hr'(r) 

with initial conditions Cicn) (0) = 0; Hi(*) (T) are known functions when Ci(‘) 
(T) are determined for k < n. 

It is possible to establish for system (3.1) the validity of the following relationships: 

CT’ (q = &lll $I? (q (Pia (r) (3.2) 

G” (.c) = i & qai (u) &” (u) du 

@(To) = S?'(T,) (i =: 1, 2, 3, 4) 

where Tori tz) are the elements of the generating system fundamental matrix, and 
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Cpii (0) = 1 and (~gj (0) = 0 (i + j). 
Substitution of the first approximations for P, Q, rl, and Pa into (I.7 ) by 

formulas ( 1.5 ) yields 

&CO, = cza + B” (MI2 + M22) + (1 + ~q”Mss -I- q3cs x (3.3) 

(MI coshg + ~2~in~~~) + 2~2 (1 + @h) MS cos X2z + 2s X 

(I + #Pz) X bf,M8 co9 (h, - h,) z + MzMs sin (h, - h&f 

F2'01 z.tz Cl" + 2% + JflZ + nf2a + fm= + 2 (61 -t p) x 

(M1cos 3L1% + M2sin h,z) + 2 [c& +(ki+ @)I MS cos Xzz. + 

2h [N&f, cos (h, - h,) T + M2M3 sin (h, - h&r1 - Fr@‘) 

For brevity of presentation we introduce the quantities L i 

h = -41 4 #w 6 - h (fr - wi) 

Ll’ = - (1 + fw wi - h CM - (1 + p4 fzl 
(3.4) 

L 2 = - (4 + W) VI- wz) + kfl- c2f2) 

L 8 = we? -I- w, - (1 + Bh) f2, A,' = Sd + fx - Pf2 

L& = B (fi - @%fz) - Clfi + cd2 
If $n these formulas we eliminate terms that are independent of p and determined 

by the generating solution, they assume the following form : 

L&o) = [ki, + ki, (AI,2 + MC) -+ ki,M,a I i- ki, (M, cm hz + 

M7, sin hrr) + kiJWi cos hz~ + ki&Z~ [Ml CoS (A, - &) z‘ $_ 

&I2 sin (A, ‘--- hs) Z1 

Here and in what follows Ic,, denote functions of parameters a and ;ro which 
can be determined by formulas (3.4 ) I (I.. 5 ) a and (3.3 ) + They are not adduced here 

because of their unwieldiness. 
Functions s $1’ (z) are calculated by the second formula (3.2 ) as follows : 

Sfi”’ (7) I: J” [AI, (L’,“’ -+ ah,) - sin h,uLf’+ M3 sin (h, - hs)uL;(“))du (3.5 1 

0 

Lp("c)= - f (~~(~~0)~~~~) -cosh,uLp + 

0 

~~COS(~~_~2} Z.&L;“*‘] du 

$i’)(~)= J{G?[--- M~sin(h, - h,)u -f- Mzcos(hl - Qu] - 
0 
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4. It is shown in Cl 1 that if solution (2.2 ) is to be T, -periodic it is necessary 
and sufficient that 

‘PI = P (T,) - P (0) = 0, ‘Fz = Q (T,) - Q (0) = 0 (4.1) 

Ys=rr(T,)-rr(o)=o, Y,=rs(T&--s(0)=O 

where Yg, (i = 1, 2, 3, 4) are functions of MI, Mz, M,, a , and p. The eq- 
ualities (4.11, which determine M,@), a,, and ml (j = 1, 2, 3; i = 1, 2, 3,4), 
are not independent owing to the existence in system (2.1) of the first integral which 
corresponds to the second formula in (1.4 ) 12 1 l It can be shown that the third condition 
is a corollary of the remaining if Ms # 0, as well as when MI = M2 = 
Ms=Ofor m-,2+ 1>0. By analogy with the statement in [3 1 it is possible to 

consider one of the quantities 
oneofthe mi(i=1,2,3,4) 

M:, MC, M,“, or a as an arbitrary constant, and 
as an arbitrary function of p which vanishes for p = 0. 

Reducing equalities (4.1) by p and equating to zero the terms at zero powers of 

p, we obtain the following necessary conditions of periodicity : 

CP (To) = Ci(l) (MI, Mz, MS, a) = 0 (i - I,Z, 3) 

which in accordance with the last of formulas (3.2 ) are of the form 

M&;+R1=O, MIE,+Rt=O, MsEs+R,=O (4.2) 

where 

E, = Tc,r - l/s kslr + krs (Mrs + M,a) + (ks + l/z 4s’) Ms2 + 

a& 
Es = k,, - ‘Ii k, + (k,, + ‘12 k,) (MP -I- Mt) + k,,MZ+ 

ah 
The expressions for R 1, R 2 t and R 4 are nonzero only when AI 1 h2 is equal 

2, 1/2 , or -1, and are of the form 

R, = 0, R2 = l/2 k&M& R 4 = l/2 (k,, - k,dM#z 

(A, /A, = 2) 

RI = l/2 (Ic,, - kIa’) M,M,, R2 = -‘,‘2 (ha - 4,‘) M$fs 

R 4 = l/2 k,, (MIa - M,“) (A, lhp = l/2) 

R, = --l/2 b,‘M2&, R2 = Ms [k,,’ + kl2’ (M,a + MS? + 

k12’M,21 + 1/2 kls’ M;Ml - l/z k,M,, RP = - ‘/24&f, 

(A, lh, = -1) 

Let Ml”, M;, M 8” , and a0 satisfy Eqs. (4.2). Let us consider Jacobi ‘s 
matrices of C, (TO), Cs (Z’s), and Cd (To) in terms of MI, M2, Ma, and a 
calculated for Mj = Mj” (j = 1, 2, 3), a = ao, and also of Y,, Y2, and ‘Jr4 
in terms of mf with mi = p = 0 (i = 1, 2, 3, 4). The calculation of the 
second matrix does not involve differentiation with respect to p , hence it is possible 
to set p = 0, and since MI (j = 1, 2, 3), a , and mf (i = 1, 2, 3, 4) appear 
in solutions in the form of related sums, the considered matrices are the same. We de- 
note them by J . 

The solution of Eqs l (4.1) comprises the following three cases of existence of 
periodic solutions. 
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1’0 M,“=M,O=M,“=O, Er+O, and Es#O. Thematrix J is 
then of the third rank, and there exist univalent functions ml, ms, ms of cc and p 
that satisfy I$. (4.1) l When f~ is fairly small these functions can be represented in 
the form of converging series in integral powers of Jo which vanish when 
a is an arbitrary constant, except a0 = - &-’ (kri - l/s ks4) 

or aCL=O; 
0 
=- 

w&u - f/z k4d. Since a0 and m4 appear in the solution in the form of sum 

a = a0 + mdr it is possible to set the arbitrary quantity m4 equal zero without 
affecting the sought solutious . In the considered case solution (2.2 ) is periodic with 
arbitrary parameter a and is analytic with respect to p, in some neighborhood of its 
zero value. 

2 ‘a If Ml0 = MC = Es = 0, El # 0, and M&s, # 0, matrix J is of 
the third rank, Ms is an arbitrary quantity, and a, = i&s-l (r/s k,- k,,-- ksaMs*). 
Equations (4.1) have solutions in the form of series in integral powers of p for mlrm2, 
and m, that depend on the arbitrary &fs , and vanish when 21 = 0 ( na, is to be taken 
as equal zero 1 l 

3 ‘0 If MS#O and the ratio hi /hs is equal 2, l!a , or -1 , matrix 
J is of the third rank, unless specified otherwise, Ml is an arbitrary constant, and 
ma, ms, and m4 can be determined in the form of series of the required form in 

integral powers of p. 
If the rank of J is specified to be lower than the third V cases of branching are 

possible [4 1 I and there exist solutions which can be represented for reasonably small p 
by converging series in fractional powers of PO 

Let 
?31&=2, M,“=M,“=O, M,o#O, E,=O (4.3) 

E, = Vz (k% - ki;) MS0 # 0, E, - V2 (kB - klr’) Mao = 0 

then the necessary conditions of periodicity (4.2 ) are satisfied and J is of the second 
rank; M,O, MC, M,O, and a are determined by conditions (4.3) and ~1, ms, 

ms( and m, remain to be determined, Applying the theorem on implicit functions 
to the first and fourth of 4s. (4.11, we obtain for m2 and m4 a unique solution of 
the form 

We set ma = 6p, where 6 is an arbitrary constant. Substituting the exprea- 
sions for ms, m,, and m4 into the second of kqs . (4.1) we obtain equaff ons of 
branching of the form 

which has one small real solution for m1: which can be presented in the form of series 
in powers of p’” and depends on the arbitrary parameter 6. 

If we now set ms = elm,, the equation of branching assumes the form 

[ 2 (kls + % he > Ma” - 41sssMsO - $- (kss - kll)] dlmla + 
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If the coefficient at mrs is nonzero, then for sign R,lRoz = -1, i. e. for 

sign CJ2) (MT, M2°, M3’, CZo).CJ3) (M,“, Mt, M3’, C&O) = -1 

there are two small real solutions for ml which can be represented in the form of po- 

wer series in y”’ [41- These solutions contain the arbitrary parameter 6,. If we set 
m3 = 6,m, + C&ml2 and select 6, so that the coefficient at ml2 in the equa- 

tion of branching vanishes, there is one real solution which can be represented in the 

form of power series in P1/~, is determinate in some neighborhood of zero, and depends 

on the arbitrary parameter 6s. 

We represent m3 in the form of the sum 

m3 = Z6kmlk 
k 

By selecting ak so that the coefficients in the equation of branching successively 
vanish it is possible to obtain within the range of initial conditions of Eqs. (2.1) a se - 

quence of branching points of periodic solutions which can be represented in the form of 
series in fractional powers of i_r,. If such sequence converges, we obtain the concen - 

tration point of periodic solution branching. By imposing other constraints it is possible 

to obtain other cases of branching. 

5. If the ratio A,, /ha is neither 2, l/s, or -1, the solution of the prob- 
lem of existence of periodic solutions requires the consideration of higher approximations 
than in the two cases considered above. For this we use formulas (3.2 ) which yield 

cl” (To) and cf’ (TO) 

Cl”’ (To) = M,a (El - h,) To + r [M,L~’ - sin h,zLi” + 
0 

M3 sin (h, - h2) zL~’ + L~‘S~‘(z) + L;“lSf’ (z) + h,czS~’ (r)] dt 

cp (To) = - M,a (& - h,) To - y [M,l$) - cos h,zLf + 
0 

M3COS(?q - h,)&" + L;'")S~'(z)+ h&'(z)+ Ll"'Sl"(r)] dz 

I.nstead of the second periodicity condition of (4.1) we consider the equality 

Y,” = &Y!r++Y2=o (5.1) 
1 

Terms with zero powers of p do not appear in (5.1) and the coefficients at first powers 
of P are of the form 

-$C!“‘(To) +&C$(To)= Z’o{(k-2) [k,,‘+ 

k12’ (Ml2 + M22) +- k13’M32] - k15~;Ms - 



4~ (&a + ks5) (MI” + Ma2) - @I P41 + rEda (M2 + Ms2) t 

k43 M2 
- qpf12 

- Jfz2)1 + (h,ll:‘f&, lb 5 

km’ (Ml2 + M2) + k33’Ms2 (MP + Ma2) + 9 (Ml2 - M22)r - 
k&tf,2 M, 

--T&i-- M,-Yizy ( 

M, 

> 
ksskdf? kG,‘k,,M,2 

- WI--Q +wl--Q 1 

qs and qa represent the lower bound values of integrals in the second and where 
third of equalities (3.5 1, 
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After reduction of equality (5.1 J by ~1 we obtain the following necessary conditions 
for the existence of solutions of the sought form : 

-& c? p-0) + -& cp (To) = 0 (5.2) 

Condition (5.2 > together with the first and third of conditions (4.1) are also suffi - 
cient conditions of periodicity , since the rank of Jacobi’s matrix in zero of Yl, VIZ*, 
and Y, is equal three with respect to mi (i = 1, 2, 3, 4) . One of the quanti - 
ties Ma, Ma, Ma, or a can then be arbitrarily selected, and mi which corresponds 
to remaining quantities can be represented in the form of series in integral powers of p 
which are convergent when p is fairly small, satisfy Eqs .(4.1) and (5. I ) , and vanish 
when p = 0. ff the rank of J is required to be lower than the third, cases of 
branching are possible. 

6. Let us now assume that the frequency ratio hI ) Aa is an irrational number. 
The generating system for Eqs. (2,1> has the particular solution 

P (T) = 0, Q (z) = 0, rl (7) = MS cos &a; I’2 (T) = - MS sin hp (6.1) 

with frequency 3Ls . 
The conditions of existence of periodic solutions of system (2.1) which reduce for 

p = 0 to solution (6.1 J are of the form 
Y, = ml (cos hITo - 1) + m2 sin hITo + pC,@) (To) + . , . = 0 

Yz= -ml sinAlTo+ m2 (co9 hITo + 1) + @,(I) (To) + . _ . = 0 

Y*= Ca(l)(To) + . . . = 0 
Solutions ofthe derived equations are of the same form as in case 2 ‘0 A similar state - 

ment is also valid for the other periodic solution of the generating system with frequency ha. 
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